Inhibition of astrocytes promotes long-distance growing nerve fibers in ventral mesencephalic cultures.
نویسندگان
چکیده
Tyrosine hydroxylase-positive nerve fiber formation occurs in two diverse morphological patterns in rat fetal ventral mesencephalic slice cultures; one is non-glial-associated and the other is glial-associated. The aim of this study was to characterize the non-glial-associated nerve fibers and its relation to migration of astrocytes. Organotypic slice cultures were prepared from embryonic days 12, 14, and 18 rat fetuses and maintained for 5, 7 or 14 days in vitro. Inhibition of cell proliferation using cytosine beta-D-arabinofuranoside was conducted in embryonic day 14 ventral mesencephalic cultures. The treatment impaired astrocytic migration at 7 and 14 days in vitro. The reduced migration of astrocytes exerted a negative effect on the glial-associated tyrosine hydroxylase-positive nerve fibers, reducing the outgrowth from the tissue slice. The non-glial-associated outgrowth was, however, positively affected by reduced astrocytic migration, reaching distances around 3mm in 2 weeks, and remained for longer time in culture. Co-cultures of fetal ventral mesencephalon and frontal cortex revealed the cortex as a target for the non-glial-associated tyrosine hydroxylase-positive outgrowth. The age of the fetal tissue at plating affected the astrocytes such that older tissue increased the length of astrocyte migration. Younger tissue at plating promoted the presence of non-glial-associated outgrowth and long radial-glia-like processes, while older tissue promoted migration of neurons instead of formation of nerve fiber network. In conclusion, inhibition of astrocytic proliferation promotes the persistence of long-distance growing tyrosine hydroxylase-positive nerve fibers in ventral mesencephalic slices cultures. Furthermore, the long-distance growing nerve fibers target the frontal cortex and are absent in cultures derived from older tissue.
منابع مشابه
The Absence of CD47 Promotes Nerve Fiber Growth from Cultured Ventral Mesencephalic Dopamine Neurons
In ventral mesencephalic organotypic tissue cultures, two timely separated sequences of nerve fiber growth have been observed. The first appearing nerve fiber pattern is a long-distance outgrowth that occurs before astrocytes start to proliferate and migrate to form an astrocytic monolayer that finally surrounds the tissue slice. These long-distance growing nerve fibers are retracted as the ast...
متن کاملEffects of glial cell line-derived neurotrophic factor deletion on ventral mesencephalic organotypic tissue cultures.
Glial cell line-derived neurotrophic factor (GDNF) is potent for survival and promotion of nerve fibers from midbrain dopamine neurons. It is also known to exert different effects on specific subpopulations of dopamine neurons. In organotypic tissue cultures, dopamine neurons form two diverse nerve fiber growth patterns, targeting the striatum differently. The aim of this study was to investiga...
متن کاملEmbryonic and mature astrocytes exert different effects on neuronal growth in rat ventral mesencephalic slice cultures
One obstacle with grafting of dopamine neurons in Parkinson's disease is the insufficient ability of the transplant to reinnervate the host striatum. Another issue is the prospective interaction between the donor fetal tissue and the adult astrocytes of the host. To study nerve fiber growth and its interaction with immature/mature astrocytes, ventral mesencephalic (VM) organotypic rat tissue cu...
متن کاملOn dopamine neurons . Nerve fiber outgrowth and L - DOPA effects
Cover illustration: Photomicrograph of dopamine nerve fibers (red) and astrocytes (green) in mice fetal ventral mesencephalic slice culture.
متن کاملInterleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures
Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson's disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2008